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Abstract
PEST-containing nuclear protein (PCNP), a short-lived small nuclear protein with 178 amino acids, is a nuclear protein con-
taining two PEST sequences. PCNP is highly expressed in several malignant tumors such as cervical cancer, rectal cancer, and 
lung cancer. It is also associated with cell cycle regulation and the phosphoinositide 3-kinase/protein kinase B/mammalian 
target of rapamycin (PI3K/AKT/mTOR) and Wnt signaling pathways during tumor growth. The present article discuss how 
PCNP regulates the PI3K/AKT/mTOR and Wnt signaling pathways and related proteins, and the ubiquitination of PCNP 
regulates tumor cell cycle as well as the progress of the application of PCNP in the pathophysiology and treatment of colon 
cancer, human ovarian cancer, thyroid cancer, lung adenocarcinoma and oral squamous cell carcinoma. The main relevant 
articles were retrieved from PubMed, with keywords such as PEST-containing nuclear protein (PCNP), cancer (tumor), 
and signaling pathways as inclusion/exclusion criteria. Relevant references has been included and cited in the manuscript.

Keywords  Cell cycle · Cancer · PCNP · PI3K · Wnt

Introduction

The PEST protein domain contains extremely high levels of 
serine (S), glutamic acid (E), threonine (T), and proline (P), 
followed by histidine (H), lysine (K), or arginine (R) resi-
dues, which are mainly present in some short-lived proteins 
such as transcription factors. This class of nuclear proteins 
(NPs) are called PEST-NPs [1]. PEST-NPs participate in 
cancer metabolism, immune response and protein tran-
scription and are, therefore, good targets for cancer therapy 
[2]. These proteins are also associated with functional pro-
teins such as transcription factors, cyclins, proto-oncogene 
expression proteins, and other functional proteins. The PEST 
sequence is a protein hydrolytic enzyme recognition sig-
nal that can degrade residual proteins. Moreover, residual 
proteins can mediate the regulatory proteins of cell signal-
ing pathways involved in cell proliferation, differentiation, 
stress, and apoptosis [3].

In 1986, Rechsteiner et al. proposed that PEST proteins 
can rapidly induce hydrolytic disruption because of the asso-
ciated PEST domain [4, 5]. PEST proteins are expressed in 
many species and have diverse functions including participa-
tion in ubiquitin-mediated proteolysis, nucleocytoplasmic 
transport, stability of nuclear proteins, cell cycle regulation, 
and cyclic nucleotide signaling pathway. PEST-containing 
proteins interfere with the ubiquitin proteasome pathway, 
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nuclear pore glycosylation, and hexosamine biosynthesis 
pathway at the molecular level. A new PEST containing 
nuclear protein was (PCNP) first reported in 2002 by Mori 
et al. [6]. In the protein hydrolysis catalyzed by the ubiq-
uitin proteasome system, PEST proteins play a regulatory 
role in controlling cellular regulation. In addition, another 
nuclear protein containing PEST can ubiquitinate PCNP, 
called NIRF [7]. The domain of NIRF is similar to the char-
acteristic domain of cell proliferation-related protein Np95/
ICBP90 [8, 9]. NIRF is involved in cell cycle regulation, and 
the overexpression of it can cause G1 phase cell proliferation 
[10]. Both NIRF and Np95/ICBP90 [11, 12] are members 

of the NIRF family. In vitro and in vivo experiments have 
also shown an association between PCNP and NIRF [6]. 
On the basis of these findings, researchers have proposed 
that the nuclear protein PCNP acts as a substrate of NIRF 
and participates in the ubiquitination process of proteins 
(The involvement of nuclear protein PCNP as a substrate 
for NIRF in the ubiquitination process of proteins is shown 
in Fig. 1).

In 2020, the number of new cancer cases worldwide 
reached nearly 20 million. Leukemia, central nervous sys-
tem tumors, and lymphoma were among the top three high 
incidence cancers in children between 2018 and 2020 [13]. 

Fig. 1   NIRF promotes ubiquitination of PCNP in nuclear cells: E1 
and E2 ligases promote the binding and connection between NIRF 
and PCNP. The C-terminus of NIRF executes ubiquitin ligase func-

tion, acting as a substrate on PCNP and regulating proteasome activ-
ity (Created with Figdraw.com)
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According to previous studies, PCNP in neuroblastoma 
[14] and human thyroid cancer can inhibit the occurrence 
of tumors, while its function in ovarian cancer [15] lung 
adenocarcinoma [16] and oral squamous cell carcinoma can 
promote the occurrence of tumors. PCNP, a short-lived small 
nuclear protein containing 178 amino acids, is a nuclear pro-
tein containing two PEST domain. It participates in some 
important cellular processes and can also intervene in the 
occurrence of tumors. The data from relevant studies suggest 
that PCNP is highly expressed in several malignant tumors, 
just like cervical cancer, rectal cancer, and lung cancer. 
Related studies have confirmed that there is a mutual rela-
tionship between PEST protein and some functional proteins 
such as transcription factors, cyclins, and proto-oncogene 
expression proteins [17]. PEST proteins are widely distrib-
uted and involved in other cellular functions, such as the 
ubiquitin–proteasome pathway, nuclear pore glycosylation, 
and hexose biosynthesis pathway, as well as in the regulation 
of the cell cycle and cell proliferation. These proteins are 
also associated with chromosomal stability, tumor occur-
rence, and the immune system.

In this review, this manuscript discuss the involvement 
of PCNP ubiquitination in two related signaling pathways 
as well as the influence of upregulation and downregulation 
of PCNP in related cancers and its mechanism of action 
(Fig. 2).

Molecular Biological Mechanism of PCNP

PCNP and Ubiquitination

Ubiquitination [18, 19] is the most active and highly con-
trolled biological phenomenon in cells, and it degrades the 
labeled protein, controls its activity, changes its localiza-
tion, and strengthens or hinders its interactions. The specific 
mechanism of ubiquitination is to first consume 1 molecule 
of ATP to activate ubiquitin, and then E1 ubiquitin activating 
enzyme binds with it to form a complex [20]. Subsequently, 
it was transferred to the E2 ubiquitin-binding enzyme to 
form a complex. When E3 ubiquitin ligase specifically rec-
ognizes substrate proteins, it catalyzes the covalent trans-
fer of ubiquitin to target substrate proteins and undergoes 
proteasomal degradation. In cyclins containing the PEST 
sequence [21], in the late G1 phase, the E3 ubiquitin ligase 
ubiquitinates cyclin E and activates it [22]. Moreover, cyclin 
E can enhance the entry of S phase and DNA replication. 
The ubiquitination site in the PEST sequence appears to be 
lysine [23]. Proline can affect the construction process of 
multi‐ubiquitin chain [24].

Ubiquitination can be involved in and interfere with cell 
survival and differentiation, cell cycle progression and many 
other physiological processes. Previous research has also 

confirmed that ubiquitination can regulate tumor growth 
inhibition and tumor growth promotion pathways.

NIRF is also an E3 ubiquitin ligase [4, 5]. PCNP is mutu-
ally linked with NIRF. In vitro and in vivo experiments have 
shown that PCNP is ubiquitinated by NIRF. Indeed, a study 
showed that PCNP undergoes ubiquitination in HEK-293 T 
cells and COS-7 cells in vivo experiments [7]. Moreover, 
in vitro experiments can lead to cell cycle arrest in G0/G1 
phase by forcing the expression of let-7a or knocking out 
NIRF [25]. And the experimental results obtained from yeast 
two hybrid screening indicate the mutual influence between 
NIRF and PCNP [6]. NIRF participates in the ubiquitination 
of PCNP as its substrate [19]. NIRF ubiquitinates PCNP 
through E3 ligase. In neuroblastoma [14], both the PI3K/
AKT/mTOR and MAPK pathways are regulated by ubiq-
uitinated PCNP.

PCNP and the Signaling Pathway

Related studies have shown that PCNP is associated with cell 
cycle regulation during tumor growth, as well as the PI3K/
AKT/mTOR and Wnt signaling pathways. The PI3K/AKT 
and mTOR signaling pathways are closely connected. They 
are two important intracellular signaling pathways related 
to various aspects of cell function, participating in normal 
physiological activities and the occurrence of various patho-
logical diseases [26]. In some cases, they are considered to 
be a unique pathway critical for cell cycle regulation. For 
example, regulating cell growth, proliferation, metabolism, 
and movement. In addition, important studies have shown 
that genes related to this pathway are activated in the body 
of cancer patients [27].

PCNP and the PI3K/AKT/mTOR Signaling Pathway

Serine/threonine kinase AKT, also known as protein kinase 
B (PKB), is the focus of thousands of studies in various 
fields of biology and medicine. The AKT network is almost 
involved in the physiological functions of every organ 
system.

The development of cancer is a connection with dysregu-
lation of diverse cell signaling pathways aroused by epige-
netic and certain genetic alterations. The PI3K/AKT/mTOR 
pathway is a main dysregulation pathway of multiple can-
cers [28]. This pathway includes PI3K and its downstream 
molecule AKT (PKB). This pathway has the function of 
regulating signal transduction, controlling cell proliferation, 
apoptosis, metabolism, and influencing angiogenesis, and it 
is involved in related biological processes [29]. Compared to 
other signal transduction pathways, it is more complex. Reg-
ulating the PI3K/AKT/mTOR signaling pathway can play a 
therapeutic role in ischemic brain injury, neurodegenerative 
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diseases, and tumors [30]; hence, it is considered an impor-
tant pathway in various cancers.

In the pathological process of cancer, extracellular sign-
aling molecules activate the PI3K component in the mTOR 
signaling pathway, causing changes in PI3/AKT/mam-
malian targets, achieving the goal of regulating cellular 
processes such as angiogenesis and metastasis, cell cycle 
[31]. Among the three subtypes of PI3K, type I PI3K is 
formed by a dimer of regulatory catalytic subunit p110 and 
subunit p85, where the p85 regulatory subunit can bind 
to tyrosine receptors on the cell membrane [30]. Tyros-
ine receptors bind and activate with related ligands; thus, 

PI3K is activated by interaction with growth factor recep-
tors or junction proteins. This binding further promotes the 
p110 subunit to catalyze the conversion of PIP2 to PIP3. 
PIP3 can bind and phosphorylate Ser473 and Thr308 on 
the Akt sequence of intracellular signaling proteins, caus-
ing Akt protein activation [32]. Activating Akt can upregu-
late PTEN tumor suppressor genes. Upregulation of PTEN 
promotes PTEN nuclear translocation, which induces cel-
lular autophagy by activating the p-JUN-SESN2-AMPK 
pathway [33]. Akt shows a high expression in, breast can-
cer, lung cancer and esophageal cancer.

Fig. 2   The PI3K/AKT/mTOR and Wnt signaling pathway for PCNP (Created with Biorender.com)
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The expression level of Akt can interfere with the dif-
ferentiation of cancer cells and lymph node metastasis. S6 
is a downstream effector of the Akt/mTOR pathway. In non-
small cell lung cancer, high expression of phosphorylated 
S6 is associated with cancer lymph node metastasis [34]. 
This indirectly indicates that the expression of Akt affects 
lymph node metastasis. Activating Akt upregulates PTEN 
and promotes PTEN nuclear translocation, which can induce 
cell autophagy [33]. This also indirectly indicates that the 
expression of Akt affects the differentiation of cancer cells. 
Related studies have shown that PI3K and Akt can intervene 
through the expression of VEGF and HIF-1 during tumor 
growth and angiogenesis [35].

The PI3K/AKT/mTOR pathway is regulated by vari-
ous upstream signaling proteins and modulates many of 
the downstream effectors through collaboration with sev-
eral compensatory signaling pathways. Moreover, various 
inhibitors exist that can inhibit the PI3K/AKT signaling 
pathway, which can inhibit Akt expression, arrest cancer 
cell growth in the G0/G1 phase, and induce apoptosis [36]. 
In addition, relevant PI3K inhibitors [37] and drugs can also 
inhibit the transmission of the PI3K/AKT/mTOR signaling 
pathway to inhibit the proliferation of squamous cell carci-
noma (OSCC) cells, such as LHPP [38], FERMT1 [39] and 
curcumin nanoemulsions [40]. Furthermore, Methyl luci-
done (ML) can inhibit the PI3K/Akt pathway, causing G2/M 
phase arrest and apoptosis in ovarian cancer cells [41]. And 
ferruginol diterpenoids [42] and kirenol [43] can selectively 
inhibit the human thyroid cancer cell by mediating the PI3K/
AKT signaling pathway.

PCNP also affects lung adenocarcinoma cells [16]. After 
upregulation of PCNP, the expression levels of p-Akt, 
p-mTOR and p-PI3K in lung adenocarcinoma cells can be 
increased to promote autophagy. In addition, upregulation of 
PCNP can promote tumor growth in xenograft lung adeno-
carcinoma, and downregulation of PCNP can regulate angio-
genesis, thereby inhibiting the growth of lung adenocarci-
noma cells. Upregulation of PCNP reduced the proliferation, 
migration, and invasion of neuroblastoma, however, down-
regulate PCNP reversed this effect [14]. Thus, PCNP can 
participate in regulation as a cell cycle regulatory protein, 
tumor regulatory nuclear protein, and transcription factor.

PCNP and the Wnt Signaling Pathway

The Wnt signaling pathway is widely involved in the regula-
tion of cell proliferation, apoptosis, and EMT, and is there-
fore considered an important pathway for studying tumor 
occurrence and development [44], with great research sig-
nificance [45].

The Wnt signaling pathway is the classic pathway medi-
ated by β-catenin. Wnts are cysteine-rich glycoproteins 
that regulate bone development in embryos and promote 

osteogenesis in adults. The Wnt signaling pathway consists 
of three parts. They are the nucleus, cytoplasm, and extra-
cellular signaling components. The Wnt signaling pathway 
can participate in and intervene in many cancers; hence, it 
is considered a primary target for therapeutic interventions, 
for example, Wnt secretion by epithelial cells drives colon 
cancer progression [46, 47]. Moreover, in cancer, autocrine 
Wnt signaling can play a role in promoting tumor growth by 
increasing the proliferation and survival rate of tumor cells, 
for example, such as functions to promoting cell prolifera-
tion and preventing apoptosis [48, 49].

One of the important biological indicators for detecting 
whether Wnt is activated is β-catenin. After receiving the 
Wnt signal from the transmembrane receptor FZD protein 
family, the degrading activity of β-catenin can be inhibited 
by the phosphorylation of downstream protein kinases. Sta-
ble accumulation in cytoplasmic β-catenin proteins can bind 
to the related transcription factor and initiate transcription 
of downstream target genes.

Studies have confirmed that the Wnt signaling pathway 
plays an important part in normal growth and tumorigen-
esis [50, 51]. This pathway can control cell proliferation, 
differentiation, and apoptosis. Moreover, the Wnt signaling 
pathway participates in almost all stages of cancer, and the 
disruption of this pathway leads to several abnormalities 
[52]. When specific mutations occur in the components of 
the Wnt signaling pathway, this specific mutation can be 
regulated by β-catenin-mediated gene transcription disor-
ders mediated by catenin intervene in the development and 
progression of many cancers, induction of tumor formation, 
and promotion of tumor progression. The main reason [53] 
for the increase in malignancy-related mortality is transition 
of cancer cells.

The progression of cancer metastasis is driven by multi-
ple tumor intrinsic mechanisms; however, the role of tumor 
exogenous elements in the tumor microenvironment (TME) 
cannot be ignored, for example, macrophages in the TME 
usually show a high correlation with poor patient prognosis 
[54]. The population composition of macrophage is derived 
from two sources: bone marrow and tissue. Alveolar mac-
rophages (AMs) are a population of control tissue-receptor 
macrophages (TRMs) involved in homeostasis and metasta-
sis in tissues. The Wnt/β-catenin signaling pathway is a can-
cer cell marker and has also been identified as a pathological 
regulator of infection of AMs.

To gain the ability required to form metastasis, epithe-
lial stem cells or differentiated epithelial cells must undergo 
an epithelial-to-mesenchymal transition (EMT) [55, 56]. 
Among them, β-catenin interacts with TCF/LEF and vari-
ous coactivators to drive the transcription of key programs 
in CSC, tumor cells and EMT. For example, PCNP promotes 
the progression of ovarian cancer [15] by accelerating the 
nuclear accumulation of β-catenin and triggering cancer 
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cells to undergo EMT. Mechanistically, β-catenin nuclear 
translocation can activate Wnt/β-catenin signaling path-
way, while PCNP-binding β-catenin can promote its nuclear 
translocation.

In addition, Wnt signal can also be regulated [48, 57] 
function of cell proliferation and apoptosis, thus cancer 
occurring is mediated by the Wnt/β-catenin target genes. 
The Wnt/β-catenin pathway can participate in and regulate 
epithelial mesenchymal transition [58], one of the major 
pathways of EMT, while PCNP can control the expression 
of genes that regulate EMT and the occurrence of EMT. 
CD31 is considered an ideal biomarker for endothelial cells 
in blood vessels. The research results indicate that through 
IHC experiments, the expression levels of PCNP, Ki-67, 
and CD31 in the PCNP knockout group were significantly 
reduced, indicating that PCNP downregulation inhibits 
endothelial growth, and vice versa. This study, it can be 
found that ovarian cancer cells with PCNP overexpres-
sion will change their morphology, and prove that PCNP 
promotes the growth of vascular endothelial cells in can-
cer tissue. Thus, these showed that PCNP may influence 
tumor through the classical Wnt signaling pathway [15]. 
PCNP regulates autophagy in human thyroid cancer cells 
by the Wnt/β-catenin signaling pathway [59]. The quanti-
tative results of cell cycle arrest effect and cell cycle data 
measured by flow cytometry showed that the protein levels 
of autophagy markers Beclin 1 and p62 in the upregulated 
group of PCNP decreased, LC3A/B increased, while the 
opposite was observed in the downregulated group of PCNP. 
The specific mechanism is as follows: PCNP improves cell 
cycle arrest and affects apoptosis by regulating the expres-
sion of cell cycle regulatory genes and activating the ERK/
JNK/p38 pathway in thyroid cancer (TC) cells. And overex-
pression of PCNP reduces the expression level of the Wnt/β-
catenin pathway in TC cells, thereby promoting autophagy in 
thyroid TC cells. In addition to PCNP, hirsutenone can also 
inhibit Wnt/β-catenin signaling pathway induces apoptosis 
in human thyroid cancer cells.

Ubiquitination of PCNP Regulates Cell Cycle

The localization of the NIRF gene [60, 61] at the point 
responsible for chromosomal DNA amplification in some 
types of tumor cells indicates that NIRF plays a role in cell 
cycle regulation and tumorigenesis in certain human tumors. 
NIRF is also a nuclear protein containing PEST, which ubiq-
uitinate PCNP [17] and is involved in cell cycle regulation. 
Moreover, overexpression of NIRF can result an increase 
in cell in the G1 phase [10]. PCNP also participates in the 
ubiquitination process of proteins as a substrate of NIRF. 
Therefore, it can be inferred that PCNP is also involved in 
cell-cycle regulation.

Relationship Between PCNP and Other Proteins

The selective expression of genes determines the function 
of the encoded proteins, however, documented evidence 
has demonstrated that genes encoding proteins in the same 
pathway or components of the same protein complex are 
typically co-regulated [62], and exhibited the same expres-
sion pattern. Based on the current research progress, the 
relationship between PCNP and the transcription patterns of 
related proteins is summarized below by reading the litera-
ture. On the basis of the similarity of their functions, PCNP 
is thought to co-express with protein phosphatase 1 (PP1CC) 
[63], EF hand domain protein 1 (CGREF1) [64], signal rec-
ognition particle 9-kDa protein (SRP9) [65], and phosphate 
polysaccharide mannose transferase subunit 1 (DPM1) [66]. 
According to the transcription pattern of PCNP, the results 
showed that PCNP was co-expressed with PSMC6, TRAM1, 
BMI1, MARCH7 and TMEM123 [7]. PSMC6 can remove 
damaged or misfolded proteins that may impair cellular 
function, as well as proteins that no longer require function, 
in order to maintain protein dynamic balance [67].TRAM1 
can mediate endoplasmic reticulum membrane stimulation 
to secrete proteins and their transport [68]. BMI1, a proto 
oncogene that can form PCG-PRC1 complexes, can medi-
ate ubiquitination of histones, leading to genetic changes 
in chromatin expression rate. The specific mechanism is 
influenced by chromatin remodeling and histone modifica-
tion [69]. MARCH7 can regulate DNA damage and mediate 
TGF-β-induced cellular behavior [70, 71]. TMEM123 can 
mediate tumor cell death by inducing swelling and vacuoli-
zation of cancer cells and their organelles, as well as improv-
ing membrane permeability. The functions of these proteins 
above indicate that their co expression pattern with PCNP 
is beneficial.

PCNP and Cancer

Cancer, one of the main influencing factors for global popu-
lation mortality rates [72]. Among the current methods for 
treating cancer, chemotherapy ranks first in terms of treat-
ment effectiveness, but there are also effects of drug resist-
ance and side effects, [17], hence it is crucial to find new 
treatments for cancer.

Colon Cancer

It is well known that carcinoma of colon [73], a disease has 
a very high incidence and prevalence worldwide, which is 
the third most common cancer [74]. It has a very high rate 
of morbidity and mortality rates [75]. However, the exist-
ing treatment methods mainly include surgery and adjuvant 
chemotherapy, which also bring inevitable side effects to 
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patients during treatment [76]. Therefore, developing new 
methods for treating colon cancer maybe can alleviate the 
current situation of inevitable side effects in treatment.

Family of signal transducers and activators of transcrip-
tion (STAT) protein [77] signal transducers and activators, 
composed of transcription factors, is responsible for regu-
lating various molecular and cellular processes. In cancer 
biology, STAT3 and STAT5 [78] have received consider-
able attention, they are consistently activated in a variety of 
cancers, through intracellular signaling to transmit signals 
from the membrane to the nucleus to activate gene transcrip-
tion. Thus, they are linked to human cancers. Because it is 
known that JAK/STAT signaling pathway can be involved in 
cell growth and immune function. Based on the biological 
role of this signaling pathway and cytokines, Slattery et al. 
have observed many statistically significant interactions of 
this pathway after many experiments, one of which is that 
STAT3 and STAT5 are correlated with colon cancer survival 
[79].

As a transcription factor, PCNP serves two purposes in 
different tumor types through regulating the signaling path-
ways it controls and the expression of multiple genes. One 
study demonstrated that PCNP is associated with lymph 
node metastasis in colon cancer [80]. Thereafter, based on 
the recognition that PCNP is a differentially expressed gene 
associated with lymph node involvement in colon cancer, 
and that overexpression of PCNP upregulates the signal 
transducer and activator of transcription (STAT)3/5 pathway 
and inhibits apoptosis in human colon cancer cells, Xu et al. 
demonstrate that LINC00858 upregulates PCNP by cumulat-
ing the transcription factor RAD21, activates the STAT3/5 
signaling pathway, and promotes colon cancer progression. 
The authors thought that LINC00858 may affect the progres-
sion of colon cancer through the STAT3/5 pathway, which 
is modulated by PCNP and RAD21 [81].

In addition, Wnt/β-catenin [82, 83] and PI3K/AKT/
mTOR [84, 85] signaling pathways are also involved in the 
regulation of colon cancer [86]. Thyroid hormone recep-
tor β1 can promote the development of human colorectal 
cancer by enhancing PI3K/AKT signaling [87]. And scutel-
larin enhances Wnt/β-catenin signaling can promote colon 
cancer [88].

Ovarian Cancer

One of the main causes affecting the mortality rate of female 
cancer patients worldwide is ovarian cancer [89], and almost 
140 thousand [90] patients die annually worldwide. It is the 
most lethal tumor in the female reproductive organs [91]. 
In the early stages of cancer, only a very small number of 
ovarian cancers can be diagnosed [92], and more than half 
of patients diagnosed with ovarian cancer are accompanied 
by tumor metastasis, leading to poor prognosis and high 

mortality rates. Up to now, most treatment methods are sin-
gle [93], and the presence of drug resistance and repeated 
treatments have also led to a lower 5-year survival rate for 
patients. Based on the difficulty in diagnosing ovarian cancer 
mentioned above, it is urgent to explore a new and effective 
biomarker and potential molecular mechanism for ovarian 
cancer metastasis, providing new directions for the treatment 
of ovarian cancer.

Kwon et al. have shown that Wnt/β-catenin signaling and 
its downstream pathway, epithelial-to-mesenchymal transi-
tion, are play an important part in ovarian cancer metastasis 
[94]. At the same time, downregulation of PCNP can inhibit 
the activity of ovarian cancer cells and accelerate the apop-
tosis of cancer cells [15]. The specific mechanism is as fol-
lows. First, PCNP combines with β-catenin, which promotes 
nuclear translocation of β-catenin, and the nuclear translo-
cation of β-catenin will further activate the Wnt/β-catenin 
signaling pathway. In addition, PCNP regulates the expres-
sion of EMT-related genes, which subsequently promoting 
the emergence of EMT. These findings suggest that PCNP 
may promote the progression of ovarian cancer through the 
activation of the Wnt/β-catenin signaling pathway and EMT. 
At the same time, in order to investigate the effect of PCNP 
on the migration and invasion of OC cells, a PCNP overex-
pression and knockout model was established. The results 
showed that PCNP overexpression promoted the migration 
of SK-OV-3 and A2780 cells. However, downregulation of 
PCNP significantly inhibited cell migration. It may become 
a new target for the treatment of ovarian cancer. In addition, 
another study suggests that SOX9/NFIA can also affect Wnt/
β-catenin signaling pathway promotes metastasis of human 
ovarian cancer [95].

Thyroid Cancer

The most common case of endocrine malignancies is thyroid 
cancer, and papillary thyroid cancer is one of the most well-
known form, which accounts for almost 85% [96], of thyroid 
cancer cases [97]. And the incidence of small papillary thy-
roid carcinoma continued a sharp increase in recent years 
[98]. However, despite multiple intensified treatments [99], 
malignant thyroid cancer still has a poor prognosis [100], 
and the pathological and physiological mechanisms of TC 
occurrence are still unclear. Therefore, in order to solve the 
current dilemma and better treat thyroid cancer, it is crucial 
to search for new oncogenic molecules that mediate cancer. 
Hydrogen sulfide (H2S) is currently widely recognized as 
the third gas signaling molecule that plays an important role 
in various physiological and pathological conditions. Many 
studies have shown that many signaling pathways, such as 
promote autophagy, miR-30c, PI3K/Akt/mTOR [101], and 
LKB1/STRAD/MO25, AMPK/mTOR signaling pathways, 
induced by H2S [102].
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Wu et al. demonstrated that exogenous H2S regulated the 
development of thyroid cancer cells by the RAS/RAF/MEK/
ERK and ROS/PI3K/Akt/mTOR pathways [103]. However, 
studies have shown that PCNP can also mediate the develop-
ment of thyroid cancer cells.

As important members of the MAPK family, ERK, JNK, 
and p38 MAPK play important roles in inducing apopto-
sis and cell cycle arrest [104]. PCNP, which controls the 
expression of cell cycle regulatory genes and activates the 
ERK/JNK/p38 pathway, can enhance cell cycle arrest and 
induce apoptosis of thyroid cancer cells. Chen et al. showed 
that [59] overexpression of PCNP can inhibit the growth 
of human thyroid cancer cells in both xenograft and non-
xenotransplantation settings; moreover, downregulation of 
PCNP induced an opposite trend in these cells. In addition, 
PCNP overexpression can reduce the expression level of the 
Wnt/β-catenin signaling pathway components in TC cells, 
that is, the regulating Wnt3a and inhibiting the activation 
of β-catenin and GSK-3β, thus promoting autophagy in 
TC cells. However, after the downregulation of PCNP, the 
expression level of the Wnt/β-catenin signaling pathway in 
TC cells will increase, namely, showing the opposite result. 
These findings suggest that PCNP upregulation could serve 
as an approach to prevent the development of human thyroid 
cancer.

In addition, by knocking down the vitamin D receptor, 
the Wnt/β-catenin signaling pathway can be mediated to 
promote the proliferation, apoptosis and invasion of thyroid 
cancer cells [105], and it can also inhibit the Wnt signal-
ing pathway by knocking out the long non-coding RNA 
CCAT2/β chain protein pathway to achieve anti-tumor effect 
[106].

Lung Adenocarcinoma

Among global cancer cases, patients with lung cancer have 
the highest mortality rate [107]. According to histological 
classification, lung cancer can be divided into small cell lung 
cancer, squamous cell lung cancer, lung adenocarcinoma, 
and large cell cancer; among these types, lung adenocarci-
noma is the main form of cancer [108]. Like ovarian can-
cer, more than half of lung cancer patients have metastatic 
diseases and poor prognosis [109]. The 5-year survival rate 
of patients with advanced or metastatic lung cancer does 
not exceed one-fifth [110]. Based on the severe situation of 
metastasis and poor prognosis of lung cancer, finding a new 
cancer biomarker to overcome the current difficulties may 
break the deadlock.

A recent study has shown that PCNP can regulate the 
STAT3/5 and PI3K/Akt/mTOR signaling pathways in human 
lung adenocarcinoma to intervene in cancer progression 
[16]. Downregulation of PCNP will inhibit the development 
of lung adenocarcinoma cells, while upregulation of PCNP 

will have a different situation. The overexpression of PCNP 
increase the level of expression of p-PI3K, p-STAT3/5, 
p-Akt and p-mTOR in lung adenocarcinoma cells, thereby 
enhancing autophagy, while PCNP knockdown showed the 
opposite trend. In addition, upregulation of PCNP promotes 
the development of xenograft lung adenocarcinoma; while 
downregulation of PCNP inhibits angiogenesis, thereby 
inhibiting the development of lung adenocarcinoma.

At the same time, by establishing PCNP overexpression 
and knockout models, that manuscript investigated the pro-
liferation, migration, and invasion of human lung adenocar-
cinoma cells mediated by PCNP. The experimental results 
showed that overexpression of PCNP promoted the prolifera-
tion and survival ability of A549 and H1299 cells, increased 
the number of colonies, and promoted the migration of A549 
and H1299 cells, while knockdown of PCNP showed the 
opposite effect. These results indicate that PCNP can medi-
ate the proliferation, survival, migration, and invasion of 
human lung adenocarcinoma cells.

Therefore, these findings suggests that PCNP down-
regulation could prevent the development of human lung 
adenocarcinoma.

Oral Squamous Cell Carcinoma

Oral cancer, the sixth most common cancer [111]. And 
the incidence rate of oral malignancies is increasing [112], 
among which squamous cell carcinoma is the most common. 
Oral squamous cell carcinoma is the most common head and 
neck malignant tumor [113] with the highest [114] incidence 
rate among oral cancers. The mortality rate of oral squamous 
cell carcinoma patients is as high as nearly half [115].

At present, the "gold standard" for the diagnosis of 
tumors in clinical practice is still pathological diagnosis 
[116]. However, due to the fact that most oral malignancies 
are discovered relatively late and generally diagnosed in the 
late stages of cancer, the cure rate for oral cancer patients 
is extremely low. Therefore, early diagnosis is particularly 
important as it can effectively prevent cancer complications 
and have a good prognosis. However, due to its unique path-
ological location, accurate and timely early detection of oral 
cancer is very difficult. Therefore, it is urgent to find a new 
cancer biomarker to overcome the current dilemma.

Multiple studies have shown that PCNP plays different 
roles in different cancers, sometimes acting as an oncogenic 
factor and sometimes as an anticancer factor. The latest study 
shows that in OSCC patients, the survival rate of patients 
with high expression of PCNP is significantly higher than 
that of those with low expression or normal value of PCNP, 
indicating a positive correlation between PCNP expression 
and patient survival rate. By systematically analyzing the 
mechanical properties of tumor differentiation and tissue 
interface, Zhang Leyang et al. found that the expression level 
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of PCNP varies in OSCC tissues with different degrees of 
differentiation, and the expression level of PCNP in adjacent 
cancer tissues is lower than that in cancer tissues. These 
research results indicate that PCNP can serve as a potential 
biomarker for diagnosing and distinguishing OSCC stages. 
It was also found that measuring the mechanical properties 
of the cancer cell tissue interface can better grasp effective 
information and provide strong evidence for the diagnosis 
of OSCC [117].

Summary

PCNP is a finger circular protein, is a protein ligase with 
ubiquitination ability; it is mainly localized in the nucleus 
and participants in proteolytic degradation. Moreover, data 
from relevant studies suggest that PCNP may participate 
in signaling pathways related to cell cycle regulation and 
genomic stability through its interaction with NIRF. Thus, 
PCNP is involved in cell cycle regulation. The researchers 
also found high expression of PCNP has been observed in 
various cancer cell lines, which is H-937 myeloid leukemia 
cells and in various cancer cells, including hepatocellular 
carcinoma cells, colon cancer cells, ovarian cancer cells, 
pancreatic cancer cells, thyroid cancer cells, oral squamous 
cell carcinoma cells and cells of other malignant tumors. 
This fact suggests that PCNP may be involved in carcino-
genesis. Thus, PCNP could serve as a new therapeutic target; 
moreover, effective PCNP inhibitors or stimulants can be 
designed and developed to treat related cancers. The present 
review summarizes the mechanisms of interaction and rela-
tionships of PCNP with other related proteins.

It is found that PCNP is related to cell cycle regulation 
during tumor growth and PI3K/AKT/mTOR signaling path-
way. Additionally, the upregulation or downregulation of 
PCNP activates or suppresses cancer-related signaling path-
way, thereby enabling the regulation of cancer development.

Because of the influence of tumor heterogeneity, PCNP 
affects differently on different tumor types. Generally 
speaking, tumor heterogeneity can be divided into two 
categories: inter tumor heterogeneity and intra tumor het-
erogeneity. The former refers to the differences in genes 
and phenotypes between cells of different tumors, while 
the latter refers to the differences in genes and phenotypes 
between cells of the same tumor. Intratumoral heteroge-
neity can be divided into spatial heterogeneity (different 
regions of the same tumor) and temporal heterogeneity 
(different primary and secondary tumors). If the tumor is 
homogeneous, all tumor cells have the same sensitivity to 
the given treatment, so as long as the tumor cells die more 
than new ones, it can be completely cured. However, the 
existence of tumor heterogeneity results in different sub-
groups having varying degrees of sensitivity to different or 

the same treatment methods. Therefore, clinical treatment 
should focus on intratumoral heterogeneity and develop 
personalized and precise plans.

In colon cancer, PCNP overexpression can activate and 
inhibit the STAT3/5 signaling pathway Apoptosis of human 
colon cancer cells. Moreover, in human ovarian cancer, 
related studies have demonstrated that PCNP can also act 
through activation the Wnt/β-catenin signaling pathway 
to promote β-catenin nuclear displacement or regulate the 
expression of EMT-related genes and then trigger the occur-
rence of EMT, thus promoting the progression of ovarian 
cancer. While in human thyroid cancers, PCNP shows a high 
expression in human thyroid cancer; this effect decreased 
the proliferation, migration, and invasion of xenografted TC 
cells. PCNP overexpressing and activating the ERK/JNK/
p38 pathway and inhibiting the Wnt/β-catenin pathway, 
thus regulating apoptosis and changing the expression of 
genes regulating cell cycle to affect cell cycle arrest and 
promote autophagy in TC cells. Another study revealed that 
the progression of human lung adenocarcinoma can be sup-
pressed by downregulating PCNP expression to reduce the 
expression levels of the STAT3/5 and the PI3K/Akt/mTOR 
signaling pathway components. In addition, relevant PI3K 
inhibitors and drugs can also inhibit the transmission of the 
PI3K/AKT/mTOR signaling pathway to inhibit the prolifera-
tion of squamous cell carcinoma cells.

At the same time, a study found a close relationship 
between the expression of tumor necrosis inducing protein 
8-like 2 (TIPE2) and PCNP in patients with rheumatoid 
arthritis (RA), and both expression levels were significantly 
increased. In order to investigate the differential expression 
of TIPE2 and PCNP in peripheral blood mononuclear cells 
(PBMCs) of active and inactive RA patients, an observa-
tional study was conducted to compare high disease activ-
ity RA patients with low disease activity RA patients. The 
research results indicate that the expression levels of TIPE2 
and PCNP in PBMCs of active RA patients significantly 
increase. This indirectly suggests that PCNP is likely to be 
related to autoimmune function [118].

Perspective

Proteins containing PEST can easily become targets for 
ubiquitination. Among nuclear proteins containing PEST, 
PCNP is a short-lived new oncogene, and its ubiquitina-
tion can serve as a new chemotherapy target. Although the 
research potential of PCNP is large, current studies on PCNP 
are not comprehensive, and other regulatory mechanisms 
have not been investigated. Thus, further studies on this 
topic are required.
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